Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612858

RESUMEN

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Asunto(s)
Asma , Linfopoyetina del Estroma Tímico , Humanos , Triptasas , Quimasas , Inductores de la Angiogénesis , Serina Proteasas , Citocinas
2.
Eur J Intern Med ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38402021

RESUMEN

BACKGROUND: Macrophages are the predominant immune cells in the human lung and play a central role in airway inflammation, including asthma and chronic obstructive pulmonary disease (COPD). Thymic stromal lymphopoietin (TSLP), a pleiotropic cytokine mainly expressed by bronchial epithelial cells, plays a key role in asthma and COPD pathobiology. TSLP exists in two variants: the long form (lfTSLP) and a shorter TSLP isoform (sfTSLP). We aimed to localize TSLP in human lung macrophages (HLMs) and investigate the mechanisms of its release from these cells. We also evaluated the effects of the two variants of TSLP on the release of angiogenic factor from HLMs. METHODS: We employed immunofluorescence and Western blot to localize intracellular TSLP in HLMs purified from human lung parenchyma. HLMs were activated by T2-high (IL-4, IL-13) and T2-low (lipopolysaccharide: LPS) immunological stimuli. RESULTS: TSLP was detected in HLMs and subcellularly localized in the cytoplasm. IL-4 and LPS induced TSLP release from HLMs. Preincubation of macrophages with brefeldin A, known to disrupt the Golgi apparatus, inhibited TSLP release induced by LPS and IL-4. lfTSLP concentration-dependently induced the release of vascular endothelial growth factor-A (VEGF-A), the most potent angiogenic factor, from HLMs. sfTSLP neither activated nor interfered with the activating property of lfTSLP on macrophages. CONCLUSIONS: Our results highlight a novel immunologic circuit between HLMs and TSLP. Given the central role of macrophages in airway inflammation, this autocrine loop holds potential translational relevance in understanding innovative aspects of the pathobiology of asthma and chronic inflammatory lung disorders.

4.
Front Immunol ; 14: 1257398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841257

RESUMEN

Introduction: Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency. CVID is a heterogeneous disorder with a presumed multifactorial etiology. Intravenous or subcutaneous immunoglobulin replacement therapy (IgRT) can prevent severe infections but not underlying immune dysregulation. Methods: In this study, we evaluated the serum concentrations of proinflammatory (TNF-α, IL-1ß, IL-6) and immunoregulatory cytokines (IL-10), as well as lipopolysaccharide (LPS) and soluble CD14 (sCD14) in CVID individuals with infectious only (INF-CVID), and those with additional systemic autoimmune and inflammatory disorders (NIC-CVID), and healthy donors (HD). Results: Our results showed increased serum concentrations of TNF-α, IL-1ß, IL-6, and IL-10 in both INF-CVID and NIC-CVID subjects compared to HD. However, elevations of TNF-α, IL-1ß, IL-6, and IL-10 were significantly more marked in NIC-CVID than INF-CVID. Additionally, LPS concentrations were increased only in NIC-CVID but not in INF-CVID compared to HD. Circulating levels of sCD14 were significantly increased in NIC-CVID compared to both INF-CVID and HD. Discussion: These findings indicate persistent cytokine dysregulation despite IgRT in individuals with CVID. Moreover, the circulating cytokine profile reveals the heterogeneity of immune dysregulation in different subgroups of CVID subjects.


Asunto(s)
Inmunodeficiencia Variable Común , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Lipopolisacáridos , Receptores de Lipopolisacáridos , Inmunoglobulinas
5.
Cancer Immunol Immunother ; 72(10): 3363-3376, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37525065

RESUMEN

Polymorphonuclear neutrophils (PMNs) are the main effector cells in the inflammatory response. The significance of PMN infiltration in the tumor microenvironment remains unclear. Metastatic melanoma is the most lethal skin cancer with an increasing incidence over the last few decades. This study aimed to investigate the role of PMNs and their related mediators in human melanoma. Highly purified human PMNs from healthy donors were stimulated in vitro with conditioned media (CM) derived from the melanoma cell lines SKMEL28 and A375 (melanoma CM), and primary melanocytes as controls. PMN biological properties (chemotaxis, survival, activation, cell tracking, morphology and NET release) were evaluated. We found that the A375 cell line produced soluble factors that promoted PMN chemotaxis, survival, activation and modification of morphological changes and kinetic properties. Furthermore, in both melanoma cell lines CM induced chemotaxis, activation and release of neutrophil extracellular traps (NETs) from PMNs. In contrast, the primary melanocyte CM did not modify the biological behavior of PMNs. In addition, serum levels of myeloperoxidase, matrix metalloprotease-9, CXCL8/IL-8, granulocyte and monocyte colony-stimulating factor and NETs were significantly increased in patients with advanced melanoma compared to healthy controls. Melanoma cell lines produce soluble factors able to "educate" PMNs toward an activated functional state. Patients with metastatic melanoma display increased circulating levels of neutrophil-related mediators and NETs. Further investigations are needed to better understand the role of these "tumor-educated neutrophils" in modifying melanoma cell behavior.


Asunto(s)
Trampas Extracelulares , Melanoma , Humanos , Neutrófilos/patología , Quimiotaxis , Melanoma/patología , Microambiente Tumoral
6.
Eur J Intern Med ; 117: 111-118, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37500310

RESUMEN

Mastocytosis is a heterogeneous disease associated to uncontrolled proliferation and increased density of mast cells in different organs. This clonal disorder is related to gain-of-function pathogenic variants of the c-kit gene that encodes for KIT (CD117) expressed on mast cell membrane. Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine, which plays a key role in allergic disorders and several cancers. TSLP is a survival and activating factor for human mast cells through the engagement of the TSLP receptor. Activated human mast cells release several preformed mediators, including tryptase. Increased mast cell-derived tryptase is a diagnostic biomarker of mastocytosis. In this study, we found that in these patients serum concentrations of TSLP were lower than healthy donors. There was an inverse correlation between TSLP and tryptase concentrations in mastocytosis. Incubation of human recombinant TSLP with sera from patients with mastocytosis, containing increasing concentrations of tryptase, concentration-dependently decreased TSLP immunoreactivity. Similarly, recombinant ß-tryptase reduced the immunoreactivity of recombinant TSLP, inducing the formation of a cleavage product of approximately 10 kDa. Collectively, these results indicate that TSLP is a substrate for human mast cell tryptase and highlight a novel loop involving these mediators in mastocytosis.


Asunto(s)
Mastocitosis , Linfopoyetina del Estroma Tímico , Humanos , Triptasas/metabolismo , Citocinas/metabolismo , Mastocitosis/metabolismo , Mastocitos/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769357

RESUMEN

COVID-19 is a viral disease caused by SARS-CoV-2. This disease is characterized primarily, but not exclusively, by respiratory tract inflammation. SARS-CoV-2 infection relies on the binding of spike protein to ACE2 on the host cells. The virus uses the protease TMPRSS2 as an entry activator. Human lung macrophages (HLMs) are the most abundant immune cells in the lung and fulfill a variety of specialized functions mediated by the production of cytokines and chemokines. The aim of this project was to investigate the effects of spike protein on HLM activation and the expression of ACE2 and TMPRSS2 in HLMs. Spike protein induced CXCL8, IL-6, TNF-α, and IL-1ß release from HLMs; promoted efficient phagocytosis; and induced dysfunction of intracellular Ca2+ concentration by increasing lysosomal Ca2+ content in HLMs. Microscopy experiments revealed that HLM tracking was affected by spike protein activation. Finally, HLMs constitutively expressed mRNAs for ACE2 and TMPRSS2. In conclusion, during SARS-CoV-2 infection, macrophages seem to play a key role in lung injury, resulting in immunological dysfunction and respiratory disease.


Asunto(s)
COVID-19 , Humanos , COVID-19/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo
8.
Immunol Res ; 71(1): 70-82, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36385678

RESUMEN

High levels of human group IIA secreted phospholipase A2 (hGIIA) have been associated with various inflammatory disease conditions. We have recently shown that hGIIA activity and concentration are increased in the plasma of patients with hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) and negatively correlate with C1-INH plasma activity. In this study, we analyzed whether the presence of both hGIIA and C1-INH impairs their respective function on immune cells. hGIIA, but not recombinant and plasma-derived C1-INH, stimulates the production of IL-6, CXCL8, and TNF-α from peripheral blood mononuclear cells (PBMCs). PBMC activation mediated by hGIIA is blocked by RO032107A, a specific hGIIA inhibitor. Interestingly, C1-INH inhibits the hGIIA-induced production of IL-6, TNF-α, and CXCL8, while it does not affect hGIIA enzymatic activity. On the other hand, hGIIA reduces the capacity of C1-INH at inhibiting C1-esterase activity. Spectroscopic and molecular docking studies suggest a possible interaction between hGIIA and C1-INH but further experiments are needed to confirm this hypothesis. Together, these results provide evidence for a new interplay between hGIIA and C1-INH, which may be important in the pathophysiology of hereditary angioedema.


Asunto(s)
Angioedemas Hereditarios , Proteína Inhibidora del Complemento C1 , Fosfolipasas A2 Grupo II , Humanos , Interleucina-6 , Leucocitos Mononucleares , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Proteína Inhibidora del Complemento C1/química , Proteína Inhibidora del Complemento C1/metabolismo , Fosfolipasas A2 Grupo II/química , Fosfolipasas A2 Grupo II/metabolismo
9.
Mult Scler Relat Disord ; 68: 104371, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36544318

RESUMEN

BACKGROUND: It remains unclear how vaccine doses and combinations of vaccination and infection affect the magnitude and quality of immune responses, particularly against novel SARS-CoV-2 variants in subjects with immune-related disorders, such as people with multiple sclerosis (pwMS). Several studies have evaluated the duration of anti-SARS-CoV-2 immune protection in healthy individuals; however clinical data suggest an attenuated short-term humoral response to SARS-CoV-2 vaccines in pwMS receiving disease-modifying therapies (DMTs). METHODS: In this prospective study, we evaluated the humoral response to the third (3rd) BNT162b2 vaccine (booster) dose in a monocentric cohort of pwMS undergoing eight different DMTs, all without previous SARS-CoV-2 infection. Quantitative determination of SARS-CoV-2 IgG Spike titre was carried out by anti-SARS-CoV-2 S assay in 65 pwMS and 9 healthy controls, all without previous SARS-CoV-2 infection. Moreover, these measurements were also compared to their relative levels at 21 days (T1) and ∼6 months (T2) after the second (2nd) vaccination. RESULTS: We observed that the humoral response to the booster dose in Interferon ß-1a-, Dimethyl fumarate- and Teriflunomide-treated pwMS is comparable to healthy controls, while increased in Cladribine-treated pwMS. Additionally, the 3rd dose elicits a seroconversion in the 100% of pwMS under Fingolimod and in the 65% of those under Ocrelizumab. Moreover, multivariate regression analysis showed that treatment with Interferon ß-1a, Dimethyl fumarate and Cladribine positively associates with an increased humoral response. CONCLUSIONS: Taken together this evidence strongly indicates the importance of the booster dose to enhance SARS-CoV-2-specific immunity especially in immunocompromised subjects, such as pwMS under DMTs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Esclerosis Múltiple , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , Cladribina , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Dimetilfumarato , Interferón beta-1a , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Estudios Prospectivos , SARS-CoV-2 , Vacunación/métodos
10.
Eur J Intern Med ; 106: 111-119, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280524

RESUMEN

BACKGROUND: Heart failure (HF) is a growing public health burden, with high prevalence and mortality rates. A proportion of patients with HF have a normal ventricular ejection fraction (EF), referred to as HF with preserved EF (HFpEF), as opposed to patients with HF with reduced ejection fraction (HFrEF). HFpEF currently accounts for about 50% of all HF patients, and its prevalence is rising. Angiopoietins (ANGPTs), vascular endothelial growth factors (VEGFs) and secretory phospholipases A2 (sPLA2s) are proinflammatory mediators and key regulators of endothelial cells. METHODS: The aim of this study was to analyze the plasma concentrations of angiogenic (ANGPT1, ANGPT2, VEGF-A) and lymphangiogenic (VEGF-C, VEGF-D) factors and the plasma activity of sPLA2 in patients with HFpEF and HFrEF compared to healthy controls. RESULTS: The concentration of ANGPT1 was reduced in HFrEF compared to HFpEF patients and healthy controls. ANGPT2 levels were increased in both HFrEF and HFpEF subjects compared to controls. The ANGPT2/ANGPT1 ratio was increased in HFrEF patients compared to controls. The concentrations of both VEGF-A and VEGF-C did not differ among the three groups examined. VEGF-D was increased in both HFrEF and HFpEF patients compared to controls. Plasma activity of sPLA2 was increased in HFrEF but not in HFpEF patients compared to controls. CONCLUSIONS: Our results indicate that three different classes of proinflammatory regulators of vascular permeability and smoldering inflammation are selectively altered in HFrEF or HFpEF patients. Studies involving larger cohorts of these patients will be necessary to demonstrate the clinical implications of our findings.


Asunto(s)
Insuficiencia Cardíaca , Fosfolipasas A2 Secretoras , Humanos , Volumen Sistólico , Factor A de Crecimiento Endotelial Vascular , Factor D de Crecimiento Endotelial Vascular , Factor C de Crecimiento Endotelial Vascular , Angiopoyetinas , Células Endoteliales , Pronóstico , Fosfolipasas
11.
Front Immunol ; 13: 962669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016960

RESUMEN

Melanoma displays a rising incidence, and the mortality associated with metastatic form remains high. Monoclonal antibodies that block programmed death (PD-1) and PD Ligand 1 (PD-L1) network have revolutionized the history of metastatic disease. PD-L1 is expressed on several immune cells and can be also expressed on human neutrophils (PMNs). The role of peripheral blood PMNs as predictive biomarkers in anti-PD-1 therapy of melanoma is largely unknown. In this study, we aimed to determine activation status and PD-L1 expression on human neutrophils as possible novel biomarkers in stage IV melanoma patients (MPs). We found that PMNs from MPs displayed an activated phenotype and increased PD-L1 levels compared to healthy controls (HCs). Patients with lower PD-L1+ PMN frequencies displayed better progression-free survival (PFS) and overall survival (OS) compared to patients with high PD-L1+ PMN frequencies. Multivariate analysis showed that PD-L1+ PMNs predicted patient outcome in BRAF wild type MP subgroup but not in BRAF mutated MPs. PD-L1+ PMN frequency emerges as a novel biomarker in stage IV BRAF wild type MPs undergoing anti-PD-1 immunotherapy. Our findings suggest further evaluation of the role of neutrophil subsets and their mediators in melanoma patients undergoing immunotherapy.


Asunto(s)
Melanoma , Nivolumab , Antígeno B7-H1/genética , Biomarcadores , Humanos , Ligandos , Neutrófilos/metabolismo , Nivolumab/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo
12.
Immunology ; 167(4): 451-470, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36043705

RESUMEN

Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decisions with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage-specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as 'epigenetic memory', dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as 'trained immunity'. Here, we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Histonas/metabolismo , Diferenciación Celular/genética , Inmunidad , Inmunidad Innata
13.
Environ Int ; 166: 107395, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35839670

RESUMEN

The anthropogenic particulate matter (PM), suspended air dust that can be inhaled by humans and deposited in the lungs, is one of the main pollutants in the industrialized cities atmosphere. Recent studies have shown that PM has adverse effects on respiratory diseases. These effects are mainly due to the ultrafine particles (PM0.1, PM < 100 nm), which, thanks to their PM size, are efficiently deposited in nasal, tracheobronchial, and alveolar regions. Pulmonary macrophages are a heterogeneous cell population distributed in different lung compartments, whose role in inflammatory response to injury is of particular relevance. In this study, we investigated the effect of PM0.1 on Human Lung Macrophages (HLMs) activation evaluated as proinflammatory cytokines and chemokine release, Reactive Oxygen Species (ROS) production and intracellular Ca2+concentration ([Ca2+]i). Furthermore, PM0.1, after removal of organic fraction, was fractionated in nanoparticles both smaller (NP20) and bigger (NP100) than 20 nm by a properlydeveloped analytical protocol, allowed isolating their individual contribution. Interestingly, while PM0.1 and NP20 induced stimulatory effects on HLM cytokines release, NP100 had not effect. In particular, PM0.1 induced IL-6, IL-1ß, TNF-α, but not CXCL8, release from HLMs. Moreover, PM0.1, NP20 and NP100 did not induce ß-glucuronidase release, a preformed mediator contained in HLMs. The long time necessary for cytokines release (18 h) suggested that PM0.1 and NP20 could induce ex-novo production of the tested mediators. Accordingly, after 6 h of incubation, PM0.1 and NP20 induced mRNA expression of IL-6, TNF-α and IL-1ß. Moreover, NP20 induced ROS production and [Ca2+]i increase in a time-dependent manner, without producing cytotoxicity. Collectively, the present data highlight the main proinflammatory role of NP20 among PM fractions. This is particularly of concern because this fraction is not currently covered by legal limits as it is not easily measured at the exhausts by the available technical methodologies, suggesting that it is mandatory to search for new monitoring techniques and strategies for limiting NP20 formation.


Asunto(s)
Contaminantes Atmosféricos , Macrófagos Alveolares , Material Particulado , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/farmacología , Citocinas/metabolismo , Humanos , Interleucina-6 , Pulmón , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiología , Tamaño de la Partícula , Material Particulado/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
Trends Endocrinol Metab ; 33(7): 507-521, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35508518

RESUMEN

The ability of the immune system to discriminate external stimuli from self-components - namely immune tolerance - occurs through a coordinated cascade of events involving a dense network of immune cells. Among them, CD4+CD25+ T regulatory cells are crucial to balance immune homeostasis and function. Growing evidence supports the notion that energy metabolites can dictate T cell fate and function via epigenetic modifications, which affect gene expression without altering the DNA sequence. Moreover, changes in cellular metabolism couple with activation of immune pathways and epigenetic remodeling to finely tune the balance between T cell activation and tolerance. This Review summarizes these aspects and critically evaluates novel possibilities for developing therapeutic strategies to modulate immune tolerance through metabolism via epigenetic drugs.


Asunto(s)
Cromatina , Factores de Transcripción Forkhead , Cromatina/metabolismo , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Humanos , Tolerancia Inmunológica , Linfocitos T Reguladores/metabolismo
15.
Mult Scler Relat Disord ; 62: 103800, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462168

RESUMEN

BACKGROUND & OBJECTIVES: The persistence of the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 pandemic, partly due to the appearance of highly infectious variants, has made booster vaccinations necessary for vulnerable groups. Here, we present data regarding the decline of the SARS-CoV-2 BNT162b2 mRNA vaccine-induced humoral immune response in a monocentric cohort of MS patients. METHODS: 96 MS patients undergoing eight different DMTs, all without previous SARS-CoV-2 infection, were evaluated for anti-Spike IgG levels, 21 days (T1) and 5-6 months (T2) after the second SARS-CoV-2 BNT162b2 mRNA vaccine dose. The anti-Spike IgG titre from MS subjects was compared with 21 age- and sex-matched healthy controls (HC). RESULTS: When compared with SARS-CoV-2 IgG levels at T2 in HC, we observed comparable levels in interferon-ß 1a-, dimethyl fumarate-, teriflunomide- and natalizumab-treated MS subjects, but an impaired humoral response in MS subjects undergoing glatiramer acetate-, cladribine-, fingolimod- and ocrelizumab-treatments. Moreover, comparison between SARS-CoV-2 IgG Spike titre at T1 and T2 revealed a faster decline of the humoral response in patients undergoing dimethyl fumarate-, interferon-ß 1a- and glatiramer acetate-therapies, while those receiving teriflunomide and natalizumab showed higher persistence compared to healthy controls. CONCLUSION: The prominent decline in humoral response in MS subjects undergoing dimethyl fumarate-, interferon-ß 1a- and glatiramer acetate-therapies should be considered when formulating booster regimens as these subjects would benefit of early booster vaccinations.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Anticuerpos Antivirales , Vacuna BNT162 , Vacunas contra la COVID-19 , Dimetilfumarato/uso terapéutico , Acetato de Glatiramer/uso terapéutico , Humanos , Inmunoglobulina G/uso terapéutico , Interferón beta-1a/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Natalizumab/uso terapéutico , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
16.
Mult Scler Relat Disord ; 58: 103455, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34929455

RESUMEN

BACKGROUND: Several concerns exist on the immunogenicity of SARS-CoV-2 vaccines in multiple sclerosis (MS) subjects due to their immunomodulating disease modifying therapies (DMTs). Here we report a comparison of the humoral response to BNT162b2-mRNA coronavirus (COVID)-19 vaccine and the immunological phenotype in a cohort of 125 MS subjects undergoing different DMTs, with no history of SARS-CoV-2 infection. METHODS: We collected serum and blood samples at the first day of vaccine (T0) and 21 days after the second vaccine dose (T1) from 125 MS subjects, undergoing eight different DMTs. Sera were tested using the Elecsys anti-SARS-CoV-2-IgG assay for the detection of IgG antibodies to SARS-CoV-2 spike protein. The anti-spike IgG titres from MS subjects were compared with 24 age- and sex-matched healthy controls (HC). Percentage and absolute number of B and T lymphocytes were evaluated by cytofluorimetric analysis in the same study cohort. RESULTS: When compared with SARS-CoV-2 IgG levels in HC (n = 24, median 1089 (IQR 652.5-1625) U/mL), we observed an increased secretion of SARS-CoV-2 IgG in interferon-beta 1a (IFN)-treated MS subjects (n = 22, median 1916 (IQR 1024-2879) U/mL) and an impaired humoral response in MS subjects undergoing cladribine (CLAD) (n = 10, median 396.9 (IQR 37.52-790.9) U/mL), fingolimod (FTY) (n = 19, median 7.9 (IQR 4.8-147.6) U/mL) and ocrelizumab (OCRE) (n = 15, median 0.67 (IQR 0.4-5.9) U/mL) treatment. Moreover, analysis of geometric mean titre ratio (GMTR) between different DMT's groups of MS subjects revealed that, when compared with IFN-treated MS subjects, intrinsic antibody production was impaired in teriflunomide (TERI)-, natalizumab (NAT)-, CLAD-, FTY- and OCRE-, while preserved in DMF- and GA-treated MS subjects. CONCLUSION: Humoral response to BNT162b2-mRNA-vaccine was increased in IFN-treated MS subjects while clearly blunted in those under CLAD, FTY and OCRE treatment. This suggests that the DMTs could have a key role in the protection from SARS-CoV-2 related disease and complication in MS subjects, underlying a novel aspect that should be considered in the selection of the most appropriate therapy under COVID-19 pandemic.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Interferón beta-1a/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Pandemias , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
17.
Clin Rev Allergy Immunol ; 60(3): 369-382, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34050913

RESUMEN

Hereditary angioedema (HAE) is a rare genetic disease, characterized by recurrent and unexpected potentially life-threatening mucosal swelling. HAE may be further classified into HAE with C1-inhibitor deficiency (C1-INH-HAE) and HAE with normal C1-INH activity (nlC1-INH-HAE), mostly due to mutations leading to increased vascular permeability. Recent evidence implicates also the innate and adaptive immune responses in several aspects of angioedema pathophysiology. Monocytes/macrophages, granulocytes, lymphocytes, and mast cells contribute directly or indirectly to the pathophysiology of angioedema. Immune cells are a source of vasoactive mediators, including bradykinin, histamine, complement components, or vasoactive mediators, whose concentrations or activities are altered in both attacks and remissions of HAE. In turn, through the expression of various receptors, these cells are also activated by a plethora of molecules. Thereby, activated immune cells are the source of molecules in the context of HAE, and on the other hand, increased levels of certain mediators can, in turn, activate immune cells through the engagement of specific surface receptors and contribute to vascular endothelial processes that lead to hyperpemeability and tissue edema. In this review, we summarize recent developments in the putative involvement of the innate and adaptive immune system of angioedema.


Asunto(s)
Angioedemas Hereditarios , Bradiquinina , Proteína Inhibidora del Complemento C1/genética , Humanos , Mutación
18.
Clin Exp Med ; 21(3): 415-427, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33687603

RESUMEN

Mastocytosis is a disorder characterized by the abnormal proliferation and/or accumulation of mast cells in different organs. More than 90% of patients with systemic mastocytosis have a gain-of-function mutation in codon 816 of the KIT receptor on mast cells (MCs). The symptoms of mastocytosis patients are related to the MC-derived mediators that exert local and distant effects. MCs produce angiogenic and lymphangiogenic factors, including vascular endothelial growth factors (VEGFs) and angiopoietins (ANGPTs). Serum concentrations of VEGF-A, VEGF-C, VEGF-D, ANGPT1 and ANGPT2 were determined in 64 mastocytosis patients and 64 healthy controls. Intracellular concentrations and spontaneous release of these mediators were evaluated in the mast cell lines ROSAKIT WT and ROSA KIT D816V and in human lung mast cells (HLMCs). VEGF-A, ANGPT1, ANGPT2 and VEGF-C concentrations were higher in mastocytosis patients compared to controls. The VEGF-A, ANGPT2 and VEGF-C concentrations were correlated with the symptom severity. ANGPT1 concentrations were increased in all patients compared to controls. ANGPT2 levels were correlated with severity of clinical variants and with tryptase levels. VEGF-A, ANGPT1 and VEGF-C did not differ between indolent and advanced mastocytosis. ROSAKIT WT, ROSAKIT D816V and HLMCs contained and spontaneously released VEGFs and ANGPTs. Serum concentrations of VEGFs and ANGPTs are altered in mastocytosis patients.


Asunto(s)
Angiopoyetinas/sangre , Mastocitosis/metabolismo , Regulación hacia Arriba , Factores de Crecimiento Endotelial Vascular/sangre , Adulto , Anciano , Estudios de Casos y Controles , Línea Celular , Femenino , Mutación con Ganancia de Función , Humanos , Masculino , Mastocitosis/sangre , Mastocitosis/genética , Persona de Mediana Edad , Gravedad del Paciente , Proteínas Proto-Oncogénicas c-kit/genética , Estudios Retrospectivos , Adulto Joven
19.
Clin Rev Allergy Immunol ; 60(3): 383-395, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33606193

RESUMEN

Hereditary angioedema (HAE) with C1-inhibitor deficiency belongs to bradykinin-mediated angioedemas. It is characterized by recurrent subcutaneous and/or submucosal swelling episodes (HAE attacks) and erythema marginatum skin rash as a pre-attack (prodromal) phase. HAE attacks were shown to be accompanied by peripheral blood neutrophilia. We aimed to find molecular mechanisms that may explain the distinct role of neutrophil granulocytes in HAE. Plasma levels of blood cells and factors related to neutrophil activation (cytokines, chemokines, chemotactic factors, enzymes, and neutrophil extracellular trap) were measured in plasma samples obtained from patients during symptom-free periods (n = 77), during prodromal phase (n = 8) and attacks (n = 14), during a spontaneously resolved attack (n = 1), and in healthy controls (n = 79). Higher counts of white blood cells, lymphocytes, and neutrophil granulocytes were found in symptom-free patients compared with controls; these cell counts were elevated further during HAE attacks. The level of chemokine (C-C motif) ligand 5, monocyte chemoattractant protein-1, and myeloperoxidase were also higher in the symptom-free patients than in the controls. Levels of monocyte chemoattractant protein-1, leukotriene B4, neutrophil elastase, and myeloperoxidase were elevated during attacks. During erythema marginatum, white blood cells and monocyte count and levels of interleukin 8 were elevated compared with symptom-free period. Similar changes were detected during the attack follow-up. We conclude that the activation of NGs in symptom-free periods and a further increase observed during attacks suggests that NGs may be involved in the pathomechanism of HAE with C1-INH deficiency.


Asunto(s)
Angioedemas Hereditarios , Angioedemas Hereditarios/diagnóstico , Quimiocina CCL2 , Proteína Inhibidora del Complemento C1 , Eritema , Humanos , Activación Neutrófila , Neutrófilos , Peroxidasa , Enfermedades Cutáneas Genéticas
20.
Cells ; 10(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445787

RESUMEN

Human lung mast cells (HLMCs) express the high-affinity receptor FcεRI for IgE and are strategically located in different compartments of human lung, where they play a role in several inflammatory disorders and cancer. Immunoglobulin superantigens (e.g., protein A of Staphylococcus aureus and protein L of Peptostreptococcus magnus) bind to the variable regions of either the heavy (VH3) or light chain (κ) of IgE. IL-33 is a cytokine expressed by epithelial cells that exerts pleiotropic functions in the lung. The present study investigated whether immunoglobulin superantigens protein A and protein L and IL-33 caused the release of inflammatory (histamine), angiogenic (VEGF-A) and lymphangiogenic (VEGF-C) factors from HLMCs. The results show that protein A and protein L induced the rapid (30 min) release of preformed histamine from HLMCs. By contrast, IL-33 did not induce the release of histamine from lung mast cells. Prolonged incubation (12 h) of HLMCs with superantigens and IL-33 induced the release of VEGF-A and VEGF-C. Preincubation with IL-33 potentiated the superantigenic release of histamine, angiogenic and lymphangiogenic factors from HLMCs. Our results suggest that IL-33 might enhance the inflammatory, angiogenic and lymphangiogenic activities of lung mast cells in pulmonary disorders.


Asunto(s)
Interleucina-33/metabolismo , Pulmón/citología , Mastocitos/metabolismo , Superantígenos/metabolismo , Inductores de la Angiogénesis/metabolismo , Anticuerpos Monoclonales/metabolismo , Humanos , Inmunoglobulina E/metabolismo , Inmunoglobulina G/metabolismo , Neovascularización Fisiológica , Receptores de IgE/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...